EconPapers    
Economics at your fingertips  
 

The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces

R.I. Boţ, E.R. Csetnek and P.T. Vuong

European Journal of Operational Research, 2020, vol. 287, issue 1, 49-60

Abstract: Tseng’s forward–backward–forward algorithm is a valuable alternative for Korpelevich’s extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich’s method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward–backward–forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng’s forward–backward–forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems.

Keywords: Convex programming; Variational inequalities; Pseudo-monotonicity; Dynamical system; Tseng’s FBF algorithm, (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172030388X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:287:y:2020:i:1:p:49-60

DOI: 10.1016/j.ejor.2020.04.035

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:49-60