A matheuristic algorithm for stochastic home health care planning
Erfaneh Nikzad,
Mahdi Bashiri and
Babak Abbasi
European Journal of Operational Research, 2021, vol. 288, issue 3, 753-774
Abstract:
Efficient human resource planning is the cornerstone of designing an effective home health care system. Human resource planning in home health care system consists of decisions on districting/zoning, staff dimensioning, resource assignment, scheduling, and routing. In this study, a two-stage stochastic mixed integer model is proposed that considers these decisions simultaneously. In the planning phase of a home health care system, the main uncertain parameters are travel and service times. Hence, the proposed model takes into account the uncertainty in travel and service times. Districting and staff dimensioning are defined as the first stage decisions, and assignment, scheduling, and routing are considered as the second stage decisions. A novel algorithm is developed for solving the proposed model. The algorithm consists of four phases and relies on a matheuristic-based method that calls on various mixed integer models. In addition, an algorithm based on the progressive hedging and Frank and Wolf algorithms is developed to reduce the computational time of the second phase of the proposed matheuristic algorithm. The efficiency and accuracy of the proposed algorithm are tested through several numerical experiments. The results prove the ability of the algorithm to solve large instances.
Keywords: Home health care; Matheuristic algorithm; Districting; Staff dimensioning; Progressive hedging algorithm; Fix and optimize method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172030583X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:288:y:2021:i:3:p:753-774
DOI: 10.1016/j.ejor.2020.06.040
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().