EconPapers    
Economics at your fingertips  
 

Forecasting corporate failure using ensemble of self-organizing neural networks

Philippe du Jardin ()

European Journal of Operational Research, 2021, vol. 288, issue 3, 869-885

Abstract: For more than a decade, the number of research works that deal with ensemble methods applied to bankruptcy prediction has been increasing. Ensemble techniques present some characteristics that, in most situations, allow them to achieve better forecasts than those estimated with single models. However, the difference between the performance of an ensemble and that of its base classifier but also between that of ensembles themselves, is often low. This is the reason why we studied a way to design an ensemble method that might achieve better forecasts than those calculated with traditional ensembles. It relies on a quantification process of data that characterize the financial situation of a sample of companies using a set of self-organizing neural networks, where each network has two main characteristics: its size is randomly chosen and the variables used to estimate its weights are selected based on a criterion that ensures the fit between the structure of the network and the data used over the learning process. The results of our study show that this technique makes it possible to significantly reduce both the type I and type II errors that can be obtained with conventional methods.

Keywords: Risk analysis; Finance; Forecasting; Corporate failure; Ensemble-based model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720305634
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:288:y:2021:i:3:p:869-885

DOI: 10.1016/j.ejor.2020.06.020

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:288:y:2021:i:3:p:869-885