EconPapers    
Economics at your fingertips  
 

Multi-stage stochastic programming models for provisioning cloud computing resources

Kerem Bülbül, Nilay Noyan and Hazal Erol

European Journal of Operational Research, 2021, vol. 288, issue 3, 886-901

Abstract: We focus on the resource provisioning problem of a cloud consumer from an Infrastructure-as-a-Service type of cloud. The cloud provider offers two deployment options, which can be mixed and matched as appropriate. Cloud instances may be reserved for a fixed time period in advance at a smaller usage cost per hour but require a full commitment and payment for the entire contract duration. In contrast, on-demand instances reflect a pay-as-you-go policy at a premium. The trade-off between these two options is rooted in the inherent uncertainty in demand and price and makes it attractive to complement a base reserved capacity with on-demand capacity to hedge against the spikes in demand. This paper provides several novel multi-stage stochastic programming formulations to enable a cloud consumer to handle the cloud resource provisioning problem at a tactical level. We first formulate the cloud resource provisioning problem as a risk-neutral multi-stage stochastic program, which serves as the base model for further modeling variants. In our second set of models, we also incorporate a certain concept of system reliability. In particular, chance constraints integrated into the base formulation require a minimum service level met from reserved capacity, provide more visibility into the future available capacity, and smooth out expensive on-demand usage by hedging against possible demand fluctuations. An extensive computational study demonstrates the value of the proposed models by discussing computational performance, gleaning practical managerial insights from the analysis of the solutions of the proposed models, and quantifying the value of the stochastic solutions.

Keywords: OR in service industries; Multi-stage stochastic programming; Chance constraints; Cloud computing; Resource provisioning; On-demand instance; Reserved instance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720305701
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:288:y:2021:i:3:p:886-901

DOI: 10.1016/j.ejor.2020.06.027

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:288:y:2021:i:3:p:886-901