EconPapers    
Economics at your fingertips  
 

Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data

Yishi Zhang, Ruilin Zhu, Zhijun Chen, Jie Gao and De Xia

European Journal of Operational Research, 2021, vol. 290, issue 1, 235-247

Abstract: Feature selection is an important preprocessing and interpretable method in the fields where big data plays an essential role. In this paper, we first reformulate and analyze some representative information theoretic feature selection methods from the perspective of approximations of feature inner correlations, and indicate that many of these methods cannot guarantee any theoretical bounds of feature inner correlations. We thus introduce two lower bounds that have very simple forms for feature redundancy and complementarity, and verify that they are closer to the optima than the existing lower bounds applied by some state-of-the-art information theoretic methods. A simple and effective feature selection method based on the proposed lower bounds is then proposed and empirically verified with a wide scope of real-world datasets. The experimental results show that the proposed method achieves promising improvement on feature selection, indicating the effectiveness of the feature criterion consisting of the proposed lower bounds of redundancy and complementarity.

Keywords: Data mining; Feature selection; Redundancy; Complementarity; Lower bounds (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720308328
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:290:y:2021:i:1:p:235-247

DOI: 10.1016/j.ejor.2020.09.028

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:235-247