EconPapers    
Economics at your fingertips  
 

An accelerated directional derivative method for smooth stochastic convex optimization

Pavel Dvurechensky, Eduard Gorbunov and Alexander Gasnikov

European Journal of Operational Research, 2021, vol. 290, issue 2, 601-621

Abstract: We consider smooth stochastic convex optimization problems in the context of algorithms which are based on directional derivatives of the objective function. This context can be considered as an intermediate one between derivative-free optimization and gradient-based optimization. We assume that at any given point and for any given direction, a stochastic approximation for the directional derivative of the objective function at this point and in this direction is available with some additive noise. The noise is assumed to be of an unknown nature, but bounded in the absolute value. We underline that we consider directional derivatives in any direction, as opposed to coordinate descent methods which use only derivatives in coordinate directions. For this setting, we propose a non-accelerated and an accelerated directional derivative method and provide their complexity bounds. Our non-accelerated algorithm has a complexity bound which is similar to the gradient-based algorithm, that is, without any dimension-dependent factor. Our accelerated algorithm has a complexity bound which coincides with the complexity bound of the accelerated gradient-based algorithm up to a factor of square root of the problem dimension. We extend these results to strongly convex problems.

Keywords: Stochastic programming; Convex programming; Acceleration; Derivative-free optimization; Zero-order methods (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720307402
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:290:y:2021:i:2:p:601-621

DOI: 10.1016/j.ejor.2020.08.027

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:601-621