EconPapers    
Economics at your fingertips  
 

An online algorithm for the risk-aware restless bandit

Jianyu Xu, Lujie Chen and Ou Tang

European Journal of Operational Research, 2021, vol. 290, issue 2, 622-639

Abstract: The multi-armed bandit (MAB) is a classical model for the exploration vs. exploitation trade-off. Among existing MAB models, the restless bandit model is of increasing interest because of its dynamic nature, which makes it highly applicable in practice. Like other MAB models, the traditional (risk-neutral) restless bandit model searches for the arm with the lowest mean cost and does not consider risk-aversion, which is critical in cases such as clinical trials and financial investment. This limitation thus hinders the application of the traditional restless bandit. Motivated by these concerns, we introduce a general risk measure that satisfies a mild restriction to formulate a risk-aware restless model; in particular, we set a risk measure as the criterion for the performance of each arm, instead of the expectation as in the traditional case. Compared with classical MAB models, we conclude that our model settings accommodate risk-aware researchers and decision makers. We present an index-based online algorithm for the problem, and derive an upper bound on the regret of this algorithm. Then, we conclude that our algorithm retains an instance-based regret of order O(log T/T), which is consistent with the classical MAB model. Further, some specific risk measures, namely, mean-deviation, shortfall and the discrete Kusuoka risk measure, are used to demonstrate the details of our framework.

Keywords: Markov process; Online optimization; Multi-armed bandit; Risk-aware; Risk measure (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720307414
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:290:y:2021:i:2:p:622-639

DOI: 10.1016/j.ejor.2020.08.028

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:622-639