A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models
Muqing Du,
Heqing Tan and
Anthony Chen
European Journal of Operational Research, 2021, vol. 290, issue 3, 982-999
Abstract:
Step size determination (also known as line search) is an important component in effective algorithmic development for solving the traffic assignment problem. In this paper, we explore a novel step size determination scheme, the Barzilai-Borwein (BB) step size, and adapt it for solving the stochastic user equilibrium (SUE) problem. The BB step size is a special step size determination scheme incorporated into the gradient method to enhance its computational efficiency. It is motivated by the Newton-type methods, but it does not need to explicitly compute the second-order derivative. We apply the BB step size in a path-based traffic assignment algorithm to solve two well-known SUE models: the multinomial logit (MNL) and cross-nested logit (CNL) SUE models. Numerical experiments are conducted on two real transportation networks to demonstrate the computational efficiency and robustness of the BB step size. The results show that the BB step size outperforms the current step size strategies, i.e., the Armijo rule and the self-regulated averaging scheme.
Keywords: Transportation; Stochastic user equilibrium; Barzilai-Borwein step size; Path-based traffic assignment algorithm; Cross-nested logit (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720307712
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:290:y:2021:i:3:p:982-999
DOI: 10.1016/j.ejor.2020.08.058
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().