Polynomial-size formulations and relaxations for the quadratic multiple knapsack problem
Laura Galli,
Silvano Martello,
Carlos Rey and
Paolo Toth
European Journal of Operational Research, 2021, vol. 291, issue 3, 871-882
Abstract:
The Quadratic Multiple Knapsack Problem generalizes, simultaneously, two well-known combinatorial optimization problems that have been intensively studied in the literature: the (single) Quadratic Knapsack Problem and the Multiple Knapsack Problem. The only exact algorithm for its solution uses a formulation based on an exponential-size number of variables, that is solved via a Branch-and-Price algorithm. This work studies polynomial-size formulations and upper bounds. We derive linear models from classical reformulations of 0-1 quadratic programs and analyze theoretical properties and dominances among them. We define surrogate and Lagrangian relaxations, and we compare the effectiveness of the Lagrangian relaxation when applied to a quadratic formulation and to a Level 1 reformulation linearization that leads to a decomposable structure. The proposed methods are evaluated through extensive computational experiments.
Keywords: Combinatorial optimization; Quadratic multiple knapsack; Binary quadratic programming; Lagrangian relaxation; Reformulation linearization technique (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720309383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:291:y:2021:i:3:p:871-882
DOI: 10.1016/j.ejor.2020.10.047
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().