EconPapers    
Economics at your fingertips  
 

Data-driven distributionally robust capacitated facility location problem

Ahmed Saif and Erick Delage

European Journal of Operational Research, 2021, vol. 291, issue 3, 995-1007

Abstract: We study a distributionally robust version of the classical capacitated facility location problem with a distributional ambiguity set defined as a Wasserstein ball around an empirical distribution constructed based on a small data sample. Both single- and two-stage problems are addressed, with customer demands being the uncertain parameter. For the single-stage problem, we provide a direct reformulation into a mixed-integer program. For the two-stage problem, we develop two iterative algorithms, based on column generation, for solving the problem exactly. We also present conservative approximations based on support set relaxation for the single- and two-stage problems, an affine decision rule approximation of the two-stage problem, and a relaxation of the two-stage problem based on support set restriction. Numerical experiments on benchmark instances show that the exact solution algorithms are capable of solving large scale problems efficiently. The different approximation schemes are numerically compared and the performance guarantee of the two-stage problem’s solution on out-of-sample data is analyzed.

Keywords: Distributionally robust optimization; Uncertainty; Facility location (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720308304
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:291:y:2021:i:3:p:995-1007

DOI: 10.1016/j.ejor.2020.09.026

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:291:y:2021:i:3:p:995-1007