EconPapers    
Economics at your fingertips  
 

Counterfactual regret minimization for integrated cyber and air defense resource allocation

Andrew Keith and Darryl Ahner

European Journal of Operational Research, 2021, vol. 292, issue 1, 95-107

Abstract: This research presents a new application of optimal and approximate solution techniques to solve resource allocation problems with imperfect information in the cyber and air-defense domains. We develop a two-player, zero-sum, extensive-form game to model attacker and defender roles in both physical and cyber space. We reformulate the problem to find a Nash equilibrium using an efficient, sequence-form linear program. Solving this linear program produces optimal defender strategies for the multi-domain security game. We address large problem instances with an application of the approximate counterfactual regret minimization algorithm. This approximation reduces computation time by 95% while maintaining an optimality gap of less than 3%. Our application of discounted counterfactual regret results in a further 36% reduction in computation time from the base algorithm. We develop domain insights through a designed experiment to explore the parameter space of the problem and algorithm. We also address robust opponent exploitation by combining existing techniques to extend the counterfactual regret algorithm to include a discounted, constrained variant. A comparison of robust linear programming, data-biased response, and constrained counterfactual regret approaches clarifies trade-offs between exploitation and exploitability for each method. The robust linear programming approach is the most effective, producing an exploitation to exploitability ratio of 10.8 to 1.

Keywords: OR in defence; Regret; Exploitation; Robust; Cybersecurity (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720308912
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:292:y:2021:i:1:p:95-107

DOI: 10.1016/j.ejor.2020.10.015

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:292:y:2021:i:1:p:95-107