Planning a multi-sensors search for a moving target considering traveling costs
Florian Delavernhe,
Patrick Jaillet,
André Rossi and
Marc Sevaux
European Journal of Operational Research, 2021, vol. 292, issue 2, 469-482
Abstract:
This paper addresses the optimization problem of managing the research efforts of a set of sensors in order to minimize the probability of non-detection of a target. A novel formulation of the problem taking into account the traveling costs between the searched areas is proposed; it is more realistic and extends some previous problems addressed in the literature. A greedy heuristic algorithm is devised, it builds a solution gradually, using a linear approximation of the objective function refined at each step. The heuristic algorithm is complemented by a lower bound based on a piecewise linear approximation of the objective function with a parametric error, and extended to the case where the target is moving. Finally, a set of numerical experiments is performed to analyze and evaluate the proposed contributions.
Keywords: Combinatorial optimization; Multi-sensors search; Moving target; Non-linear optimization; Search theory (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720309589
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:292:y:2021:i:2:p:469-482
DOI: 10.1016/j.ejor.2020.11.012
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().