To clean or not to clean: Malware removal strategies for servers under load
Sherwin Doroudi,
Thanassis Avgerinos and
Mor Harchol-Balter
European Journal of Operational Research, 2021, vol. 292, issue 2, 596-609
Abstract:
We consider how to best schedule reparative downtime for a customer-facing online service that is vulnerable to cyber attacks such as malware infections. These infections can cause performance degradation (i.e., a slower service rate) and facilitate data theft, both of which have monetary repercussions. Infections may go undetected and can only be removed by time-consuming cleanup procedures, which require temporarily taking the service offline. From a security-oriented perspective, cleanups should be undertaken as frequently as possible. From a performance-oriented perspective, frequent cleanups are desirable because they maintain faster service, but they are simultaneously undesirable because they lead to more frequent downtimes and subsequent loss of revenue. We ask when and how often cleanups should happen.
Keywords: Markov processes; Queueing; Computer security; Malware; Maintenance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720309127
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:292:y:2021:i:2:p:596-609
DOI: 10.1016/j.ejor.2020.10.036
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().