EconPapers    
Economics at your fingertips  
 

Large portfolio losses in a turbulent market

Qihe Tang, Zhiwei Tong and Yang Yang

European Journal of Operational Research, 2021, vol. 292, issue 2, 755-769

Abstract: Consider a large credit portfolio of defaultable obligors in a turbulent market. Accordingly, the credit quality process of each obligor is described by a stochastic differential equation consisting of a drift term reflecting the trend, an individual volatility term reflecting the idiosyncratic risk, and a common volatility term reflecting the systematic risk. Moreover, for each obligor a market beta is used to measure its loading on the systematic risk. The obligor defaults at the first passage time of the credit quality process. We approximate the portfolio loss as the portfolio size becomes large. For the usual case where the individual defaults do not become rare, we establish a limit theorem for the portfolio loss, while for the other case where the individual defaults become rare, which is due to portfolio effect, we establish an asymptotic estimate for its tail probability. Both results show that the portfolio loss is driven by the systematic risk, while this driving force is amplified by the market beta. As an application, we derive asymptotic estimates for the value at risk and expected shortfall of the portfolio loss. Moreover, we implement intensive numerical studies to examine the accuracy of the obtained approximations and conduct some sensitivity analysis.

Keywords: OR in banking; Credit quality process; Systematic risk; Market beta; Continuous Ocone martingale (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720309346
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:292:y:2021:i:2:p:755-769

DOI: 10.1016/j.ejor.2020.10.043

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:755-769