EconPapers    
Economics at your fingertips  
 

Accelerated degradation tests with inspection effects

Xiujie Zhao, Piao Chen, Olivier Gaudoin and Laurent Doyen

European Journal of Operational Research, 2021, vol. 292, issue 3, 1099-1114

Abstract: This study proposes a framework to analyze accelerated degradation testing (ADT) data in the presence of inspection effects. Motivated by a real dataset from the electric industry, we study two types of effects induced by inspections. After each inspection, the system degradation level instantaneously reduces by a random value. Meanwhile, the degrading rate is elevated afterwards. Considering the absence of observations due to practical reasons, we employ the expectation–maximization (EM) algorithm to analytically estimate the unknown parameters in a stepwise Wiener degradation process with covariates. Moreover, to maintain the level of generality for the adaption of the method in various scenarios, a confidence density approach is utilized to hierarchically estimate the parameters in the acceleration link function. The proposed methods can provide efficient parameter estimation under complex link functions with multiple stress factors. Further, confidence intervals are derived based on the large-sample approximation. Simulation studies and a case study from Schneider Electric are used to illustrate the proposed methods. The results show that the proposed model yields a remarkably better fit to the Schneider data in comparison to the conventional Wiener ADT model.

Keywords: Reliability; Accelerated degradation tests; Confidence density; Degradation modeling; Wiener process (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720310006
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:292:y:2021:i:3:p:1099-1114

DOI: 10.1016/j.ejor.2020.11.041

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:292:y:2021:i:3:p:1099-1114