EconPapers    
Economics at your fingertips  
 

A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification

Asunción Jiménez-Cordero, Juan Miguel Morales and Salvador Pineda

European Journal of Operational Research, 2021, vol. 293, issue 1, 24-35

Abstract: In recent years, feature selection has become a challenging problem in several machine learning fields, such as classification problems. Support Vector Machine (SVM) is a well-known technique applied in classification tasks. Various methodologies have been proposed in the literature to select the most relevant features in SVM. Unfortunately, all of them either deal with the feature selection problem in the linear classification setting or propose ad-hoc approaches that are difficult to implement in practice. In contrast, we propose an embedded feature selection method based on a min-max optimization problem, where a trade-off between model complexity and classification accuracy is sought. By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado using off-the-shelf software for nonlinear optimization. The efficiency and usefulness of our approach are tested on several benchmark data sets in terms of accuracy, number of selected features and interpretability.

Keywords: Machine learning; Min-max optimization; Duality theory; Feature selection; Nonlinear Support Vector Machine classification (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720310195
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:293:y:2021:i:1:p:24-35

DOI: 10.1016/j.ejor.2020.12.009

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:293:y:2021:i:1:p:24-35