An iterative dynamic programming approach for the temporal knapsack problem
F. Clautiaux,
B. Detienne and
G. Guillot
European Journal of Operational Research, 2021, vol. 293, issue 2, 442-456
Abstract:
In this paper, we address the temporal knapsack problem (TKP), a generalization of the classical knapsack problem, where selected items enter and leave the knapsack at fixed dates. We model the TKP with a dynamic program of exponential size, which is solved using a method called Successive Sublimation Dynamic Programming (SSDP). This method starts by relaxing a set of constraints from the initial problem, and iteratively reintroduces them when needed. We show that a direct application of SSDP to the temporal knapsack problem does not lead to an effective method, and that several improvements are needed to compete with the best results from the literature.
Keywords: Temporal knapsack; Exact algorithm; Lagrangian relaxation; Successive sublimation dynamic programming method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720310791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:293:y:2021:i:2:p:442-456
DOI: 10.1016/j.ejor.2020.12.036
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().