EconPapers    
Economics at your fingertips  
 

Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem in tidal ports with multiple quays

Hamza Bouzekri, Gülgün Alpan and Vincent Giard

European Journal of Operational Research, 2021, vol. 293, issue 3, 892-909

Abstract: Efficient management of port resources plays a crucial role in reducing vessel stay times and avoiding the payment of demurrage charges. In this paper, we focus on the integrated Laycan and Berth Allocation and Quay Crane Assignment Problem, which considers three main decision problems in port management in an integrated way: the Laycan Allocation Problem, the dynamic continuous Berth Allocation Problem and the time-invariant Quay Crane Assignment Problem. In a second part, the integrated problem is extended to the Specific Quay Crane Assignment, which includes the assignment of a set of specific quay cranes to each vessel, considering the productivity of quay cranes and their maximum outreach. The proposed integer programming models are original in several ways. First, the formulation of the models uses predicates which ensure flexibility in the implementation, and significantly improve the computational performance. The numerical study shows that the problems of practical size can be solved to optimality in a reasonable time using commercial software. Second, since the studied problems have different decision levels, a change of decision time-interval is incorporated inside the planning horizon for seamless decision-making. Third, to ensure that this integrated problem is as close as possible to reality, we consider both physical characteristics of the ports rarely studied together (tidal ports with multiple quays and different water depths) and contractual clauses (non-working periods and Charter Party clauses). The output of the models is an efficient schedule for berthing chartered vessels with an efficient quay crane assignment, and laycans to new vessels to charter.

Keywords: OR in maritime industry; Laycan allocation; Berth and quay crane assignment; Predicates; Integer programming (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221720311024
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:293:y:2021:i:3:p:892-909

DOI: 10.1016/j.ejor.2020.12.056

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:293:y:2021:i:3:p:892-909