EconPapers    
Economics at your fingertips  
 

Understanding forecast reconciliation

Ross Hollyman, Fotios Petropoulos and Michael E. Tipping

European Journal of Operational Research, 2021, vol. 294, issue 1, 149-160

Abstract: A series of recent papers introduce the concept of Forecast Reconciliation, a process by which independently generated forecasts of a collection of linearly related time series are reconciled via the introduction of accounting aggregations that naturally apply to the data. Aside from its clear presentational and operational virtues, the reconciliation approach generally improves the accuracy of the combined forecasts. In this paper, we examine the mechanisms by which this improvement is generated by re-formulating the reconciliation problem as a combination of direct forecasts of each time series with additional indirect forecasts derived from the linear constraints. Our work establishes a direct link between the nascent Forecast Reconciliation literature and the extensive work on Forecast Combination. In the original hierarchical setting, our approach clarifies for the first time how unbiased forecasts for the entire collection can be generated from base forecasts made at any level of the hierarchy, and we illustrate more generally how simple robust combined forecasts can be generated in any multivariate setting subject to linear constraints. In an empirical example, we show that simple combinations of such forecasts generate significant improvements in forecast accuracy where it matters most: where noise levels are highest and the forecasting task is at its most challenging.

Keywords: Forecasting; Forecast combinations; Unbiasedness; Top-down; Hierarchies (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721000199
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:294:y:2021:i:1:p:149-160

DOI: 10.1016/j.ejor.2021.01.017

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:294:y:2021:i:1:p:149-160