EconPapers    
Economics at your fingertips  
 

Optimal combinations of stochastic frontier and data envelopment analysis models

Mike Tsionas

European Journal of Operational Research, 2021, vol. 294, issue 2, 790-800

Abstract: Recent research has shown that combination approaches, such as taking the maximum or the mean over different methods of estimating efficiency scores, have practical merits and offer a useful alternative to adopting only one technique. This recent research shows that taking the maximum minimizes the risk of underestimation, and improves the precision of efficiency estimation. In this paper, we propose and implement a formal criterion of weighting based on maximizing proper criteria of model fit (viz. log predictive scoring) and show how it can be applied in Stochastic Frontier as well as in Data Envelopment Analysis models, where the problem is more difficult. Monte Carlo simulations show that the new techniques perform very well and a substantive application to large U.S. banks shows some important differences with traditional models. The Monte Carlo simulations are also substantive as it is for the first time that proper and coherent optimal model pools are subjected to extensive testing in finite samples.

Keywords: Productivity and competitiveness; Data envelopment analysis; Stochastic frontier analysis; Efficiency analysis; Predictive distributions (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721000813
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:294:y:2021:i:2:p:790-800

DOI: 10.1016/j.ejor.2021.02.003

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ejores:v:294:y:2021:i:2:p:790-800