Constant Depth Decision Rules for multistage optimization under uncertainty
Vincent Guigues,
Anatoli Juditsky and
Arkadi Nemirovski
European Journal of Operational Research, 2021, vol. 295, issue 1, 223-232
Abstract:
In this paper, we introduce a new class of decision rules, referred to as Constant Depth Decision Rules (CDDRs), for multistage optimization under linear constraints with uncertainty-affected right-hand sides. We consider two uncertainty classes: discrete uncertainties which can take at each stage at most a fixed number d of different values, and polytopic uncertainties which, at each stage, are elements of a convex hull of at most d points. Given the depthμ of the decision rule, the decision at stage t is expressed as the sum of t functions of μ consecutive values of the underlying uncertain parameters. These functions are arbitrary in the case of discrete uncertainties and are poly-affine in the case of polytopic uncertainties. For these uncertainty classes, we show that when the uncertain right-hand sides of the constraints of the multistage problem are of the same additive structure as the decision rules, these constraints can be reformulated as a system of linear inequality constraints where the numbers of variables and constraints is O(1)(n+m)dμN2 with n the maximal dimension of control variables, m the maximal number of inequality constraints at each stage, and N the number of stages.
Keywords: Stochastic programming; Robust optimization; Decision rules; Stochastic Dual Dynamic Programming, (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721001557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:295:y:2021:i:1:p:223-232
DOI: 10.1016/j.ejor.2021.02.042
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().