Deep learning for credit scoring: Do or don’t?
Björn Rafn Gunnarsson,
Seppe vanden Broucke,
Bart Baesens,
María Óskarsdóttir and
Wilfried Lemahieu
European Journal of Operational Research, 2021, vol. 295, issue 1, 292-305
Abstract:
Developing accurate analytical credit scoring models has become a major focus for financial institutions. For this purpose, numerous classification algorithms have been proposed for credit scoring. However, the application of deep learning algorithms for classification has been largely ignored in the credit scoring literature. The main motivation for this research is to consider the appropriateness of deep learning algorithms for credit scoring. To this end two deep learning architectures are constructed, namely a multilayer perceptron network and a deep belief network, and their performance compared to that of two conventional methods and two ensemble methods for credit scoring. The models are then evaluated using a range of credit scoring data sets and performance measures. Furthermore, Bayesian statistical testing procedures are introduced in the context of credit scoring and compared to frequentist non-parametric testing procedures which have traditionally been considered best practice in credit scoring. This comparison will highlight the benefits of Bayesian statistical procedures and secure empirical findings. Two main conclusions emerge from comparing the different classification algorithms for credit scoring. Firstly, the ensemble method, XGBoost, is the best performing method for credit scoring of all the methods considered here. Secondly, deep neural networks do not outperform their shallower counterparts and are considerably more computationally expensive to construct. Therefore, deep learning algorithms do not seem to be appropriate models for credit scoring based on this comparison and XGBoost should be preferred over the other credit scoring methods considered here when classification performance is the main objective of credit scoring activities.
Keywords: Decision support systems; Risk analysis; Credit scoring; Deep learning; Bayesian statistical testing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172100196X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:295:y:2021:i:1:p:292-305
DOI: 10.1016/j.ejor.2021.03.006
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().