The value of text for small business default prediction: A Deep Learning approach
Matthew Stevenson,
Christophe Mues and
Cristián Bravo
European Journal of Operational Research, 2021, vol. 295, issue 2, 758-771
Abstract:
Compared to consumer lending, Micro, Small and Medium Enterprise (mSME) credit risk modelling is particularly challenging, as, often, the same sources of information are not available. Therefore, it is standard policy for a loan officer to provide a textual loan assessment to mitigate limited data availability. In turn, this statement is analysed by a credit expert alongside any available standard credit data. In our paper, we exploit recent advances from the field of Deep Learning and Natural Language Processing (NLP), including the BERT (Bidirectional Encoder Representations from Transformers) model, to extract information from 60,000 textual assessments provided by a lender. We consider the performance in terms of the AUC (Area Under the receiver operating characteristic Curve) and Brier Score metrics and find that the text alone is surprisingly effective for predicting default. However, when combined with traditional data, it yields no additional predictive capability, with performance dependent on the text’s length. Our proposed Deep Learning model does, however, appear to be robust to the quality of the text and therefore suitable for partly automating the mSME lending process. We also demonstrate how the content of loan assessments influences performance, leading us to a series of recommendations on a new strategy for collecting future mSME loan assessments.
Keywords: OR in banking; Risk analysis; Deep Learning; Text mining; Small business lending (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721001983
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:295:y:2021:i:2:p:758-771
DOI: 10.1016/j.ejor.2021.03.008
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().