EconPapers    
Economics at your fingertips  
 

Revealing Pairs-trading opportunities with long short-term memory networks

Andrea Flori and Daniele Regoli

European Journal of Operational Research, 2021, vol. 295, issue 2, 772-791

Abstract: This work examines a deep learning approach to complement investors’ practices for the identification of pairs-trading opportunities among cointegrated stocks. We refer to the reversal effect, consisting in the fact that temporarily market deviations are likely to correct and finally converge again, to generate valuable pairs-trading signals based on the application of Long Short-Term Memory networks (LSTM). Specifically, we propose to use the LSTM to estimate the probability of a stock to exhibit increasing market returns in the near future compared to its peers, and we compare and combine these predictions with trading practices based on sorting stocks according to either price or returns gaps. In so doing, we investigate the ability of our proposed approach to provide valuable signals under different perspectives including variations in the investment horizons, transaction costs and weighting schemes. Our analysis shows that strategies including such predictions can contribute to improve portfolio performances providing predictive signals whose information content goes above and beyond the one embedded in both price and returns gaps.

Keywords: Finance; Machine learning; Pairs-trading; Statistical arbitrage; Neural networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721001995
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:295:y:2021:i:2:p:772-791

DOI: 10.1016/j.ejor.2021.03.009

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:295:y:2021:i:2:p:772-791