Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach
Patrick Groetzner and
Ralf Werner
European Journal of Operational Research, 2022, vol. 296, issue 1, 101-115
Abstract:
Consider a multiobjective decision problem with uncertainty in the objective functions, given as a set of scenarios. In the single-criterion case, robust optimization methodology helps to identify solutions which remain feasible and of good quality for all possible scenarios. A well-known alternative method in the single-objective case is to compare possible decisions under uncertainty with the optimal decision with the benefit of hindsight, i.e. to minimize the (possibly scaled) regret of not having chosen the optimal decision. In this contribution, we extend the concept of regret from the single-objective case to the multiobjective setting and introduce a proper definition of multivariate (robust) (relative) regret. In contrast to the few existing ideas that mix scalarization and optimization, we clearly separate the modelling of multiobjective (robust) regret from its numerical solution. Moreover, our approach is not limited to a finite uncertainty set or interval uncertainty and furthermore, computations or at least approximations remain tractable in several important special cases. We illustrate all approaches based on a biobjective shortest path problem under uncertainty.
Keywords: Multiobjective optimization; Robust optimization; Multivariate robust regret; Chebyshev scalarization; Polytopal approximation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721003738
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:296:y:2022:i:1:p:101-115
DOI: 10.1016/j.ejor.2021.03.068
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().