EconPapers    
Economics at your fingertips  
 

Fourier trajectory analysis for system discrimination

Lucy E. Morgan and Russell R. Barton

European Journal of Operational Research, 2022, vol. 296, issue 1, 203-217

Abstract: With few exceptions, simulation output analysis has focused on static characterizations, to determine a property of the steady-state distribution of a performance metric such as a mean, a quantile, or the distribution itself. Analyses often seek to overcome difficulties induced by autocorrelation of the output stream. But sample paths generated by stochastic simulation exhibit dynamic behaviour that is characteristic of system structure and associated distributions. In this paper, we explore these dynamic characteristics, as captured by the Fourier transform of a dynamic steady-state simulation trajectory. We find that Fourier coefficient magnitudes can have greater discriminatory power than the usual test statistics when two systems have different utilisations and/or dynamic behaviour, and with simpler analysis resulting from the statistical independence of coefficient estimates at different frequencies.

Keywords: Simulation; System discrimination; Fourier analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172100480X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:296:y:2022:i:1:p:203-217

DOI: 10.1016/j.ejor.2021.05.052

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:203-217