EconPapers    
Economics at your fingertips  
 

Measuring efficiency in a general production possibility set allowing for negative data: An extension and a focus on returns to scale

Chiang Kao

European Journal of Operational Research, 2022, vol. 296, issue 1, 267-276

Abstract: Data envelopment analysis (DEA) is a technique used to measure the relative efficiency of a set of production units that applies multiple inputs to produce multiple outputs. In its original settings, the data is required to be nonnegative. To allow for negative data, several methods have been proposed. While these methods have merits, they also have weaknesses and limitations. This paper generalizes the construction of the production possibility set from production units with nonnegative observations to those with real values. Given the signs of the aggregate target and aggregate observed outputs of the production units to be evaluated, different models are developed to calculate the efficiencies under both variable and constant returns to scale technologies, and an additive model is used to identify the signs of the aggregate target and aggregate observed outputs. Since the efficiencies are calculated from the original observations without transformation or manipulation, the proposed method does not have the drawbacks of the existing methods. A case of the Detroit National Bank shows that the results obtained from the proposed method are more representative and reliable as compared to those obtained from a data transformation method.

Keywords: Data envelopment analysis; Efficiency; Negative data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721002915
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:296:y:2022:i:1:p:267-276

DOI: 10.1016/j.ejor.2021.03.061

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:267-276