A class of categorization methods for credit scoring models
Diego M.B. Silva,
Gustavo H.A. Pereira and
Tiago M. Magalhães
European Journal of Operational Research, 2022, vol. 296, issue 1, 323-331
Abstract:
Credit scoring models are usually developed using logistic regression. For several reasons, professionals of this area frequently categorize the quantitative covariates before using them in the model. In this work, we introduce a class of methods for covariate categorization in regression models for binary response variables. Applications to real data and a Monte Carlo simulation study suggest that one of the methods of this class has a better predictive performance and a smaller computational cost than other methods available in the literature.
Keywords: Risk analysis; Covariate categorization; Credit scoring models; Discretization; Logistic regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721003593
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:296:y:2022:i:1:p:323-331
DOI: 10.1016/j.ejor.2021.04.029
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().