Graph signatures: Identification and optimization
Balabhaskar Balasundaram,
Juan S. Borrero and
Hao Pan
European Journal of Operational Research, 2022, vol. 296, issue 3, 764-775
Abstract:
We introduce a new graph-theoretic paradigm called a graph signature that describes persistent patterns in a sequence of graphs. This framework is motivated by the need to detect subgraphs of significance in temporal networks, e.g., social and biological networks that evolve over time. Because the subgraphs of interest may not all “look alike” in the snapshots of the temporal network, the framework deems a subgraph to be persistent if it satisfies one of several preselected properties in each snapshot of a consecutive subsequence. The persistency requirement is parameterized by the length of this subsequence. This discrete mathematical framework can be viewed more broadly as a way to generalize classical graph properties and invariants associated with a single graph to a sequence of graphs.
Keywords: Networks; Relational; Temporal; Cross-graph mining; Frequent subgraph mining (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721002770
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:296:y:2022:i:3:p:764-775
DOI: 10.1016/j.ejor.2021.03.051
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().