Representing the nondominated set in multi-objective mixed-integer programs
Ilgın Doğan,
Banu Lokman and
Murat Köksalan
European Journal of Operational Research, 2022, vol. 296, issue 3, 804-818
Abstract:
In this paper, we consider generating a representative subset of nondominated points at a prespecified precision in multi-objective mixed-integer programs (MOMIPs). The number of nondominated points grows exponentially with problem size and finding all nondominated points is typically hard in MOMIPs. Representing the nondominated set with a small subset of nondominated points is important for a decision maker to get an understanding of the layout of solutions. The shape and density of the nondominated points over the objective space may be critical in obtaining a set of solutions that represent the nondominated set well. We develop an exact algorithm that generates a representative set guaranteeing a prespecified precision. Our experiments on a variety of problems demonstrate that our algorithm outperforms existing approaches in terms of both the cardinality of the representative set and computation times.
Keywords: Multi-objective mixed-integer programming; Representative set; Coverage gap (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721003179
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:296:y:2022:i:3:p:804-818
DOI: 10.1016/j.ejor.2021.04.005
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().