EconPapers    
Economics at your fingertips  
 

Deep reinforcement learning for the optimal placement of cryptocurrency limit orders

Matthias Schnaubelt

European Journal of Operational Research, 2022, vol. 296, issue 3, 993-1006

Abstract: This paper presents the first large-scale application of deep reinforcement learning to optimize execution at cryptocurrency exchanges by learning optimal limit order placement strategies. Execution optimization is highly relevant for both professional asset managers and private investors as execution quality affects portfolio performance at economically significant levels and is the target of regulatory supervision. To optimize execution with deep reinforcement learning, we design a problem-specific training environment that introduces a purpose-built reward function, hand-crafted market state features and a virtual limit order exchange. We empirically compare state-of-the-art deep reinforcement learning algorithms to several benchmarks with market data from major cryptocurrency exchanges, which represent an ideal test bed for our study as liquidity costs are relatively high. In total, we leverage 18 months of high-frequency data for several currency pairs with 300 million trades and more than 3.5 million order book states. We find proximal policy optimization to reliably learn superior order placement strategies. By interacting with our simulated limit order exchange, it learns cryptocurrency execution strategies that are empirically known from established markets. Order placement becomes more aggressive in anticipation of lower execution probabilities, which is indicated by trade and order imbalances.

Keywords: Finance; Optimal execution; Limit order books; Machine learning; Deep reinforcement learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721003854
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:296:y:2022:i:3:p:993-1006

DOI: 10.1016/j.ejor.2021.04.050

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-27
Handle: RePEc:eee:ejores:v:296:y:2022:i:3:p:993-1006