Reconciling mean-variance portfolio theory with non-Gaussian returns
Nathan Lassance ()
European Journal of Operational Research, 2022, vol. 297, issue 2, 729-740
Abstract:
Mean-variance portfolio theory remains frequently used as an investment rationale because of its simplicity, its closed-form solution, and the availability of well-performing robust estimators. At the same time, it is also frequently rejected on the grounds that it ignores the higher moments of non-Gaussian returns. However, higher-moment portfolios are associated with many different objective functions, are numerically more complex, and exacerbate estimation risk. In this paper, we reconcile mean-variance portfolio theory with non-Gaussian returns by identifying, among all portfolios on the mean-variance efficient frontier, the one that optimizes a chosen higher-moment criterion. Numerical simulations and an empirical analysis show, for three higher-moment objective functions and adjusting for transaction costs, that the proposed portfolio strikes a favorable tradeoff between specification and estimation error. Specifically, in terms of out-of-sample Sharpe ratio and higher moments, it outperforms the global-optimal portfolio, and also the global-minimum-variance portfolio except when using monthly returns for which estimation error is more prominent.
Keywords: Finance; Mean-variance portfolio; Higher moments; Estimation risk (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721005312
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:297:y:2022:i:2:p:729-740
DOI: 10.1016/j.ejor.2021.06.016
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().