Sparse regression for large data sets with outliers
Lea Bottmer,
Christophe Croux and
Ines Wilms
European Journal of Operational Research, 2022, vol. 297, issue 2, 782-794
Abstract:
The linear regression model remains an important workhorse for data scientists. However, many data sets contain many more predictors than observations. Besides, outliers, or anomalies, frequently occur. This paper proposes an algorithm for regression analysis that addresses these features typical for big data sets, which we call “sparse shooting S”. The resulting regression coefficients are sparse, meaning that many of them are set to zero, hereby selecting the most relevant predictors. A distinct feature of the method is its robustness with respect to outliers in the cells of the data matrix. The excellent performance of this robust variable selection and prediction method is shown in a simulation study. A real data application on car fuel consumption demonstrates its usefulness.
Keywords: Data science; Lasso; Outliers; Robust regression; Variable selection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172100477X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:297:y:2022:i:2:p:782-794
DOI: 10.1016/j.ejor.2021.05.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().