EconPapers    
Economics at your fingertips  
 

Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems

Can Li, Antonio J. Conejo, Peng Liu, Benjamin P. Omell, John D. Siirola and Ignacio E. Grossmann

European Journal of Operational Research, 2022, vol. 297, issue 3, 1071-1082

Abstract: With the increasing penetration of renewable generating units, especially in remote areas not well connected with load demand, there are growing interests to co-optimize generation and transmission expansion planning (GTEP) in power systems. Due to the volatility in renewable generation, a planner needs to include the operating decisions into the planning model to guarantee feasibility. However, solving the GTEP problem with hourly operating decisions throughout the planning horizon is computationally intractable. Therefore, we propose several spatial and temporal simplifications to the problem. Built on the generation expansion planning (GEP) formulation of Lara et al. (2018), we propose a mixed-integer linear programming formulation for the GTEP problem. Three different formulations, i.e., a big-M formulation, a hull formulation, and an alternative big-M formulation, are reported for transmission expansion. We theoretically compare the tightness of the LP relaxations of the three formulations. The proposed MILP GTEP model typically involves millions or tens of millions of variables, which makes the model not directly solvable by the commercial solvers. To address this computational challenge, we propose a nested Benders decomposition algorithm and a tailored Benders decomposition algorithm that exploit the structure of the GTEP problem. Using a case study from Electric Reliability Council of Texas (ERCOT), we are able to show that the proposed tailored Benders decomposition outperforms the nested Benders decomposition. The coordination in the optimal generation and transmission expansion decisions from the ERCOT study implies that there is an additional value in solving GEP and TEP simultaneously.

Keywords: OR in energy; Power systems; Generation transmission expansion; Mixed-integer programming; Decomposition algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721005397
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:297:y:2022:i:3:p:1071-1082

DOI: 10.1016/j.ejor.2021.06.024

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:297:y:2022:i:3:p:1071-1082