Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects
Elena Ivona Dumitrescu,
Sullivan Hué,
Christophe Hurlin and
Sessi Tokpavi
European Journal of Operational Research, 2022, vol. 297, issue 3, 1178-1192
Abstract:
In the context of credit scoring, ensemble methods based on decision trees, such as the random forest method, provide better classification performance than standard logistic regression models. However, logistic regression remains the benchmark in the credit risk industry mainly because the lack of interpretability of ensemble methods is incompatible with the requirements of financial regulators. In this paper, we propose a high-performance and interpretable credit scoring method called penalised logistic tree regression (PLTR), which uses information from decision trees to improve the performance of logistic regression. Formally, rules extracted from various short-depth decision trees built with original predictive variables are used as predictors in a penalised logistic regression model. PLTR allows us to capture non-linear effects that can arise in credit scoring data while preserving the intrinsic interpretability of the logistic regression model. Monte Carlo simulations and empirical applications using four real credit default datasets show that PLTR predicts credit risk significantly more accurately than logistic regression and compares competitively to the random forest method.
Keywords: Risk management; Credit scoring; Machine learning; Interpretability; Econometrics, (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721005695
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:297:y:2022:i:3:p:1178-1192
DOI: 10.1016/j.ejor.2021.06.053
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().