Bounds for probabilistic programming with application to a blend planning problem
Shen Peng,
Francesca Maggioni and
Abdel Lisser
European Journal of Operational Research, 2022, vol. 297, issue 3, 964-976
Abstract:
In this paper, we derive deterministic inner approximations for single and joint independent or dependent probabilistic constraints based on classical inequalities from probability theory such as the one-sided Chebyshev inequality, Bernstein inequality, Chernoff inequality and Hoeffding inequality (see Pinter, 1989). The dependent case has been modelled via copulas. New assumptions under which the bounds based approximations are convex allowing to solve the problem efficiently are derived. When the convexity condition can not hold, an efficient sequential convex approximation approach is further proposed to solve the approximated problem. Piecewise linear and tangent approximations are also provided for Chernoff and Hoeffding inequalities allowing to reduce the computational complexity of the associated optimization problem. Extensive numerical results on a blend planning problem under uncertainty are finally provided allowing to compare the proposed bounds with the Second Order Cone (SOCP) formulation and Sample Average Approximation (SAA).
Keywords: Stochastic programming; Joint chance-constraints; Bounds; Copulas; Blending problem (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721007980
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:297:y:2022:i:3:p:964-976
DOI: 10.1016/j.ejor.2021.09.023
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().