Discrete conditional-expectation-based simulation optimization: Methodology and applications
Kuo-Hao Chang,
Robert Cuckler,
Song-Lin Lee and
Loo Hay Lee
European Journal of Operational Research, 2022, vol. 298, issue 1, 213-228
Abstract:
Conditional value at risk (CVaR), which in essence is conditional expectation (CE), is a widely used risk measure commonly applied by financial engineers. This paper generalizes the concept of CE to the expected value of a loss function given that its value falls in between the α- and β-quantiles of the output distribution of a simulation model. We present a simulation optimization framework capable of efficiently estimating and optimizing this CE-based problem over a discrete feasible region. In order to allow our algorithm to be applicable to a wide range of problems including those of the black-box variety, we propose a gradient- and convexity assumption-free methodology known as Adaptive Particle and Hyperball Search for Conditional Expectation (APHS-CE). Besides applying the newly-developed Adaptive Particle Search to explore the whole feasible region globally, APHS-CE also dynamically and iteratively defines hyperball-based neighborhoods and exploits the most promising region locally through Latin Hyperball Sampling to speed up and facilitate the convergence to the global optimum. Convergence of the algorithm to the global optimal solution(s) is proved. Moreover, in order to enhance the algorithm efficiency, the variance reduction method of Importance Sampling in conjunction with a mechanism, called SOCBA-1, which is based on Optimal Computing Budget Allocation (OCBA) but tailored to fit the CE-based problems, are both applied. Numerical and empirical studies were conducted to evaluate the efficiency and efficacy of the proposed framework. Results show that the performance is promising and the framework is worth further investigation.
Keywords: Simulation; Conditional expectation; Optimal computing budget allocation; Particle swarm optimization; Simulation optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721009437
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:298:y:2022:i:1:p:213-228
DOI: 10.1016/j.ejor.2021.11.005
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().