Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo
Zhijian He
European Journal of Operational Research, 2022, vol. 298, issue 1, 229-242
Abstract:
Conditional value at risk (CVaR) is a popular measure for quantifying portfolio risk. Sensitivity analysis of CVaR is common in risk management and gradient-based optimization algorithms. In this paper, we study the infinitesimal perturbation analysis estimator for CVaR sensitivity using randomized quasi-Monte Carlo (RQMC) simulation. RQMC has proved valuable in financial option pricing with a better rate of convergence compared to Monte Carlo sampling, but theoretical guarantees for this new application of RQMC shall be studied. To this end, we first prove that the RQMC-based estimator is strongly consistent under very mild conditions. Under some technical conditions, RQMC yields a mean error rate of O(n−1/2−1/(4d−2)+ϵ) for arbitrarily small ϵ>0, where d represents the dimension of RQMC points and n is the sample size. Some typical applications of CVaR sensitivity estimation are conducted to both show how the theoretical results can be applied, as well as to provide numerical results documenting the superiority of the RQMC estimator.
Keywords: Simulation; Value at risk; Conditional value at risk; Sensitivity estimation; Quasi-Monte Carlo (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721009590
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:298:y:2022:i:1:p:229-242
DOI: 10.1016/j.ejor.2021.11.013
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().