Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique
Zsolt Darvay,
Tibor Illés and
Petra Renáta Rigó
European Journal of Operational Research, 2022, vol. 298, issue 1, 25-35
Abstract:
We propose a new predictor-corrector (PC) interior-point algorithm (IPA) for solving linear complementarity problem (LCP) with P*(κ)-matrices. The introduced IPA uses a new type of algebraic equivalent transformation (AET) on the centering equations of the system defining the central path. The new technique was introduced by Darvay and Takács (2018) for linear optimization. The search direction discussed in this paper can be derived from positive-asymptotic kernel function using the function φ(t)=t2 in the new type of AET. We prove that the IPA has O((1+4κ)nlog3nμ04ϵ) iteration complexity, where κ is an upper bound of the handicap of the input matrix. To the best of our knowledge, this is the first PC IPA for P*(κ)-LCPs which is based on this search direction.
Keywords: Interior-point methods; P*(κ)-linear complementarity problem; Predictor-corrector algorithm; Polynomial iteration complexity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721007311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:298:y:2022:i:1:p:25-35
DOI: 10.1016/j.ejor.2021.08.039
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().