Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy
Xiyuan Ma,
Roberto Rossi and
Thomas Welsh Archibald
European Journal of Operational Research, 2022, vol. 298, issue 2, 573-584
Abstract:
This paper addresses the single-item single-stocking location non-stationary stochastic lot-sizing problem under a reorder point – order quantity control strategy. The reorder points and order quantities are chosen at the beginning of the planning horizon. The reorder points are allowed to vary with time and we consider order quantities either to be a series of time-dependent constants or a fixed value; this leads to two variants of the policy: the (st,Qt) and the (st,Q) policies, respectively. For both policies, we present stochastic dynamic programs (SDP) to determine optimal policy parameters and introduce mixed integer non-linear programming (MINLP) heuristics that leverage piecewise-linear approximations of the cost function. Numerical experiments demonstrate that our solution method efficiently computes near-optimal parameters for a broad class of problem instances.
Keywords: Inventory; (s,Q) Policy; Stochastic lot-sizing; Non-stationary demand (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721005191
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:298:y:2022:i:2:p:573-584
DOI: 10.1016/j.ejor.2021.06.013
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().