EconPapers    
Economics at your fingertips  
 

Dynamic budget allocation for social media advertising campaigns: optimization and learning

Yossi Luzon, Rotem Pinchover and Eugene Khmelnitsky

European Journal of Operational Research, 2022, vol. 299, issue 1, 223-234

Abstract: This paper suggests a method for optimizing a dynamic budget allocation policy for an advertising campaign posted through a social network (e.g., Facebook, Instagram). The method, which considers unique features of social network marketing, yields an optimal targeted budget allocation policy over time for a single ad campaign and minimizes the campaign's length, given a specific budget and a desired level of exposure of each marketing segment. The model incorporates a general ‘effectiveness function’ that determines the relationship between the value of an advertising bid at a given time and the number of newly exposed users at that time. We develop closed-form solutions for dynamic budget allocation for several forms of the effectiveness function. We apply the approach to data obtained from a real-life ad campaign and show how a curve fitting regression procedure can estimate the shape and the parameters of the effectiveness function. Numerical simulations show the extent to which the optimal advertising policy is sensitive to the problem parameters.

Keywords: OR in marketing; Advertising campaign; Social networks; Optimal dynamic policy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721007098
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:299:y:2022:i:1:p:223-234

DOI: 10.1016/j.ejor.2021.08.019

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:299:y:2022:i:1:p:223-234