EconPapers    
Economics at your fingertips  
 

Parallel subgradient algorithm with block dual decomposition for large-scale optimization

Yuchen Zheng, Yujia Xie, Ilbin Lee, Amin Dehghanian and Nicoleta Serban

European Journal of Operational Research, 2022, vol. 299, issue 1, 60-74

Abstract: This paper studies computational approaches for solving large-scale optimization problems using a Lagrangian dual reformulation, solved by parallel sub-gradient methods. Since there are many possible reformulations for a given problem, an important question is: Which reformulation leads to the fastest solution time? One approach is to detect a block diagonal structure in the constraint matrix, and reformulate the problem by dualizing the constraints outside of the blocks; the approach is defined herein as block dual decomposition. Main advantage of such a reformulation is that the Lagrangian relaxation has a block diagonal constraint matrix, thus decomposable into smaller sub-problems that can solved in parallel. We show that the block decomposition can critically affect convergence rate of the sub-gradient method. We propose various decomposition methods that use domain knowledge or apply algorithms using knowledge about the structure in the constraint matrix or the dependence in the decision variables, towards reducing the computational effort to solve large-scale optimization problems. In particular, we introduce a block decomposition approach that reduces the number of dualized constraints by utilizing a community detection algorithm. We present empirical experiments on an extensive set of problem instances including a real application. We illustrate that if the number of the dualized constraints in the decomposition increases, the computational effort within each iteration of the sub-gradient method decreases while the number of iterations required for convergence increases. The key message is that it is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems using dual decomposition.

Keywords: Distributed decision making; Community detection; Block dual decomposition; Large scale optimization; Parallel subgradient algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721010055
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:299:y:2022:i:1:p:60-74

DOI: 10.1016/j.ejor.2021.11.054

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:299:y:2022:i:1:p:60-74