A tailored Benders decomposition approach for last-mile delivery with autonomous robots
Laurent Alfandari,
Ivana Ljubić and
Marcos De Melo da Silva
European Journal of Operational Research, 2022, vol. 299, issue 2, 510-525
Abstract:
This work addresses an operational problem of a logistics service provider that consists of finding an optimal route for a vehicle carrying customer parcels from a central depot to selected facilities, from where autonomous devices like robots are launched to perform last-mile deliveries. The objective is to minimize a tardiness indicator based on the customer delivery deadlines. This article provides a better understanding of how three major tardiness indicators can be used to improve the quality of service by minimizing the maximum tardiness, the total tardiness, or the number of late deliveries. We study the problem complexity, devise a unifying Mixed Integer Programming formulation and propose an efficient branch-and-Benders-cut scheme to deal with instances of realistic size. Numerical results show that this novel Benders approach with a tailored combinatorial algorithm for generating Benders cuts largely outperforms all other alternatives. In our managerial study, we vary the number of available facilities, the coverage radius of autonomous robots and their speed, to assess their impact on the quality of service and environmental costs.
Keywords: Integer Programming; Last-mile delivery; Self-driving robots; Benders decomposition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721005646
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:299:y:2022:i:2:p:510-525
DOI: 10.1016/j.ejor.2021.06.048
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().