A diversity-based genetic algorithm for scenario generation
Beatriz Brito Oliveira,
Maria Antónia Carravilla and
José Fernando Oliveira
European Journal of Operational Research, 2022, vol. 299, issue 3, 1128-1141
Abstract:
Tackling uncertainty is becoming increasingly relevant for decision-support across fields due to its critical impact on real-world problems. Uncertainty is often modelled using scenarios, which are combinations of possible outcomes of the uncertain parameters in a problem. Alongside expected value methods, decisions under uncertainty may also be tackled using methods that do not rely on probability distributions and model different decision-maker risk profiles. Scenarios are at the core of these approaches. Therefore, we propose a scenario generation methodology that seizes the structure and concepts of genetic algorithms. This methodology aims to obtain a diverse set of scenarios, evolving a scenario population with a diversity goal. Diversity is here expressed as the difference in the impact that scenarios have on the value of potential solutions to the problem. Moreover, this method does not require a priori knowledge of probability distributions or statistical moments of uncertain parameters, as it is based on their range. We adapt the available code for Biased-Random Key Genetic Algorithms to apply the methodology to a packing problem under demand uncertainty as a proof of concept, also extending its use to a multi-objective setting. We make available these code adaptations to allow the straightforward application of this scenario generation method to other problems. With this, the decision-maker obtains scenarios with a distinct impact on potential solutions, enabling the use of different criteria based on their profile and preferences.
Keywords: Scenarios; Genetic algorithms; Uncertainty (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721008237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:299:y:2022:i:3:p:1128-1141
DOI: 10.1016/j.ejor.2021.09.047
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().