A numerical study of Markov decision process algorithms for multi-component replacement problems
Jesper Fink Andersen,
Anders Reenberg Andersen,
Murat Kulahci and
Bo Friis Nielsen
European Journal of Operational Research, 2022, vol. 299, issue 3, 898-909
Abstract:
We present a unified modeling framework for Time-Based Maintenance (TBM) and Condition-Based Maintenance (CBM) for optimization of replacements in multi-component systems. The considered system has a K-out-of-N reliability structure, and components deteriorate according to a multivariate gamma process with Lévy copula dependence. The TBM and CBM models are formulated as Markov Decision Processes (MDPs), and optimal policies are found using dynamic programming. Solving the CBM model requires that the continuous deterioration process is discretized. We therefore investigate the discretization level required for obtaining a near-optimal policy. Our results indicate that a coarser discretization level than previously suggested in the literature is adequate, indicating that dynamic programming is a feasible approach for optimization in multi-component systems. We further demonstrate this through empirical results for the size limit of the MDP models when solved with an optimized implementation of modified policy iteration. The TBM model can generally be solved with more components than the CBM model, since the former has a sparser state transition structure. In the special case of independent component deterioration, transition probabilities can be calculated efficiently at runtime. This reduces the memory requirements substantially. For this case, we also achieved a tenfold speedup when using ten processors in a parallel implementation of algorithm. Altogether, our results show that the computational requirements for systems with independent component deterioration increase at a slower rate than for systems with stochastic dependence.
Keywords: Maintenance; Dynamic programming; Multi-component system; Markov decision process; Numerical study (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721006020
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:299:y:2022:i:3:p:898-909
DOI: 10.1016/j.ejor.2021.07.007
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().