A rolling-horizon approach for multi-period optimization
Lukas Glomb,
Frauke Liers and
Florian Rösel
European Journal of Operational Research, 2022, vol. 300, issue 1, 189-206
Abstract:
Mathematical optimization problems including a time dimension abound. For example, logistics, process optimization and production planning tasks must often be optimized for a range of time periods. Usually, these problems incorporating time structure are very large and cannot be solved to global optimality by modern solvers within a reasonable period of time. Therefore, the so-called rolling-horizon approach is often adopted. This approach aims to solve the problem periodically, including additional information from proximately following periods. In this paper, we first investigate several drawbacks of this approach and develop an algorithm that compensates for these drawbacks both theoretically and practically. As a result, the rolling-horizon decomposition methodology is adjusted to enable large scale optimization problems to be solved efficiently. In addition, we introduce conditions that guarantee the quality of the solutions. We further demonstrate the applicability of the method to a variety of challenging optimization problems. We substantiate the findings with computational studies on the lot-sizing problem in production planning, as well as for large-scale real-world instances of the tail-assignment problem in aircraft management. It proves possible to solve large-scale realistic tail-assignment instances efficiently, leading to solutions that are at most a few percent away from a globally optimal solution.
Keywords: Large scale optimization; Time decomposition; Rolling horizon; Lot sizing; Tail assignment (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721006536
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:300:y:2022:i:1:p:189-206
DOI: 10.1016/j.ejor.2021.07.043
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().