Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning
Xuan Vinh Doan
European Journal of Operational Research, 2022, vol. 300, issue 1, 73-84
Abstract:
Endogenous uncertainty concerns uncertainty which is dependent of decisions such as link failure in the retrofitting planning application. We propose a marginal-based distributionally robust optimization framework for integer stochastic optimization with decision-dependent discrete distributions that can be applied for the retrofitting planning application. We show that the resulting model can be formulated as a mixed-integer linear optimization problem. In order to solve the problem, we develop a constraint generation algorithm given the exponentially large number of constraints. Numerical results for the retrofitting planning application show that the proposed algorithm once tailored can solve the problem efficiently.
Keywords: Stochastic programming; Distributionally robust optimization; Endogenous uncertainty; Retrofitting planning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721006081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:300:y:2022:i:1:p:73-84
DOI: 10.1016/j.ejor.2021.07.013
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().