EconPapers    
Economics at your fingertips  
 

A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties

Yuchang Zhang, Ruibin Bai, Rong Qu, Chaofan Tu and Jiahuan Jin

European Journal of Operational Research, 2022, vol. 300, issue 2, 418-427

Abstract: In the past decade, considerable advances have been made in the field of computational intelligence and operations research. However, the majority of these optimisation approaches have been developed for deterministically formulated problems, the parameters of which are often assumed perfectly predictable prior to problem-solving. In practice, this strong assumption unfortunately contradicts the reality of many real-world problems which are subject to different levels of uncertainties. The solutions derived from these deterministic approaches can rapidly deteriorate during execution due to the over-optimisation without explicit consideration of the uncertainties. To address this research gap, a deep reinforcement learning based hyper-heuristic framework is proposed in this paper. The proposed approach enhances the existing hyper-heuristics with a powerful data-driven heuristic selection module in the form of deep reinforcement learning on parameter-controlled low-level heuristics, to substantially improve their handling of uncertainties while optimising across various problems. The performance and practicality of the proposed hyper-heuristic approach have been assessed on two combinatorial optimisation problems: a real-world container terminal truck routing problem with uncertain service times and the well-known online 2D strip packing problem. The experimental results demonstrate its superior performance compared to existing solution methods for these problems. Finally, the increased interpretability of the proposed deep reinforcement learning hyper-heuristic has been exhibited in comparison with the conventional deep reinforcement learning methods.

Keywords: Transportation; 2D packing; Hyper-heuristics; Deep reinforcement learning; Container truck routing (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721008821
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:300:y:2022:i:2:p:418-427

DOI: 10.1016/j.ejor.2021.10.032

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:300:y:2022:i:2:p:418-427