Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy
Kyungduk Moon,
Kangbok Lee,
Sunil Chopra and
Steve Kwon
European Journal of Operational Research, 2022, vol. 300, issue 2, 743-754
Abstract:
Boolean network is a modeling tool that describes a dynamic system with binary variables and their logical transition formulas. Recent studies in precision medicine use a Boolean network to discover critical genetic alterations that may lead to cancer or target genes for effective therapies to individuals. In this paper, we study a logical inference problem in a Boolean network to find all such critical genetic alterations in a minimal (parsimonious) way. We propose a bilevel integer programming model to find a single minimal genetic alteration. Using the bilevel integer programming model, we develop a branch and bound algorithm that effectively finds all of the minimal alterations. Through a computational study with eleven Boolean networks from the literature, we show that the proposed algorithm finds solutions much faster than the state-of-the-art algorithms in large data sets.
Keywords: Bioinformatics; Boolean network; Bilevel programming; Branch and bound algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721008687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:300:y:2022:i:2:p:743-754
DOI: 10.1016/j.ejor.2021.10.019
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().