Submodularity and local search approaches for maximum capture problems under generalized extreme value models
Tien Thanh Dam,
Thuy Anh Ta and
Tien Mai
European Journal of Operational Research, 2022, vol. 300, issue 3, 953-965
Abstract:
We study the maximum capture problem in facility location under random utility models, i.e., the problem of seeking to locate new facilities in a competitive market such that the captured user demand is maximized, assuming that each customer chooses among all available facilities according to a random utility maximization model. We employ the generalized extreme value (GEV) family of discrete choice models and show that the objective function in this context is monotonic and submodular. This finding implies that a simple greedy heuristic can always guarantee a (1−1/e) approximation solution. We further develop a new algorithm combining a greedy heuristic, a gradient-based local search, and an exchanging procedure to efficiently solve the problem. We conduct experiments using instances of different sizes and under different discrete choice models, and we show that our approach significantly outperforms prior approaches in terms of both returned objective value and CPU time. Our algorithm and theoretical findings can be applied to the maximum capture problems under various random utility models in the literature, including the popular multinomial logit, nested logit, cross nested logit, and mixed logit models.
Keywords: Facilities planning and design; Maximum capture; Random utility maximization; Generalized extreme value; Greedy heuristic (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721007657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:300:y:2022:i:3:p:953-965
DOI: 10.1016/j.ejor.2021.09.006
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().